Aliasing errors due to quadratic nonlinearities on triangular spectral /hp element discretisations
نویسندگان
چکیده
In this paper, consideration is given to how aliasing errors, introduced when evaluating nonlinear products, inexactly affect the solution of Galerkin spectral/hp element polynomial discretisations on triangles. A theoretical discussion is presented of how aliasing errors are introduced by a collocation projection onto a set of quadrature points insufficient for exact integration, and consider interpolation projections to geometrically symmetric collocation points. The discussion is corroborated by numerical examples that elucidate the key features. The study is first motivated with a review of aliasing errors introduced in one-dimensional spectral-element methods (these results extend naturally to tensor-product quadrilaterals and hexahedra.) Within triangular domains two commonly used expansions are a hierarchical, or modal, expansion based on a rotationally non-symmetric collapsed-coordinate system, and a Lagrange expansion based on a set of rotationally symmetric nodal points. Whilst both expansions span the same polynomial space, the construction of the two bases numerically motivates a different set of collocation points for use in the collocation projection of a nonlinear product. The purpose of this paper is to compare these two collocation projections. The analysis and results show that aliasing errors produced using a collocation projection on the rotationally non-symmetric, collapsed-coordinate system are significantly smaller than those for a collocation projection using the rotationally symmetric nodal points. In the case of the collapsed coordinate projection, if the Gaussian quadrature order employed is less than half the polynomial order of the integrand, then it is possible for the aliasing error to modify the constant mode of the expansion and therefore affect the conservation property of the approximation. However, the use of a collocation projection onto a polynomial expansion associated with a set of rotationally symmetric nodal points within the triangle is always observed to be non-conservative. Nevertheless, the rotationally symmetric collocation will maintain the overall symmetry of the triangular region, which is not typically the case when a collapsed coordinate quadrature projection is used. R. M. Kirby School of Computing, University of Utah, Salt Lake City, Utah, 84112, USA e-mail: [email protected] S. J. Sherwin (B) Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK e-mail: [email protected] 274 J Eng Math (2006) 56:273–288
منابع مشابه
Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملAlternative Subcell Discretisations for Viscoelastic Flow: Velocity Gradient Approximation Alternative Subcell Discretisations for Viscoelastic Flow: Velocity Gradient Approximation
Under subcell discretisation for viscoelastic flow, we have given further consideration to the compatibility of function spaces for stress/velocity-gradient approximation (see [JNNFM, special issue AERC 2006). This has been conducted through the three scheme discretisations (quad-fe(par), fe(sc) and fe/fv(sc)). In this companion study, we have extended the application of the original implementa...
متن کاملhp-Spectral Finite Element Analysis of Shear Deformable Beams and Plates
There are different finite element models in place for predicting the bending behavior of shear deformable beams and plates. Mostly, the literature abounds with traditional equi-spaced Langrange based low order finite element approximations using displacement formulations. However, the finite element models of Timoshenko beams and Mindlin plates with linear interpolation of all generalized disp...
متن کاملFrom h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements
A spectral/hp element discretisation permits both geometric flexibility and beneficial convergence properties to be attained simultaneously. The choice of elemental polynomial order has a profound effect on the efficiency of different implementation strategies with their performance varying substantially for low and high order spectral/hp discretisations. We examine how careful selection of the...
متن کاملFrom h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations
Article history: Received 24 November 2009 Received in revised form 22 March 2010 Accepted 23 March 2010 Available online 28 March 2010
متن کامل